Tetrahedron Letters No. 50, pp 4655-4658. 1976. Pergamon Press. Printed in Great Britain.

CYCLIC CROSS-CONJUGATED HYDROCARBONS HAVING INSERTED p-QUINOID RING. VI.¹⁾ SYNTHESIS AND SOME PROPERTIES OF A 1-CYCLOPENTADIENYLIDENE-4-CYCLO-PROPENYLIDENE-2,5-CYCLOHEXADIENE (OR [3.6.5] QUINARENE) DERIVATIVE.

Kazuko Takahashi, Fukuji Ishikawa, and Kahei Takase Department of Chemistry, Faculty of Science, Tohoku University Sendai 980, Japan

(Received in Japan 23 October 1976; received in UK for publication 11 November 1976)

In a preceding paper, we have reported the synthesis of some derivatives of [5.6.7] quinarene <u>1</u> as the first example of a cyclic cross-conjugated three-ring system. Our interest has been centered in a hitherto unknown ring system, [3.6.5] quinarene <u>2</u>, since this compound has been anticipated to have a relatively large dipole moment (μ_{π} = 12.85 D) and an appreciable value of resonance energy ($R_{\rm E}/\pi$ = 3.2 Kcal/mol) from SCF- π -MO calculation.²) We now report the synthesis and some properties of this type of a new quinarene, 2',5'-dicyano-2",3',3",4'-tetraphenyl-l-cyclopentadienylidene-4-cyclopropenylidene-2,5-cyclohexadiene, or 1,4-dicyano-

2,3,7,8-tetraphenyl [3.6.5] quinarene <u>6</u>.

The quinarene <u>6</u> was synthesized starting with the addition of p-bromotolan³) with phenylcarbene⁴) and the treatment of the adduct with hydrogen bromide to give 1-(p-bromophenyl)-2,3-diphenylcyclopropenium bromide⁵) (mp. 244-5°C; $\nu \max$ (KBr) 1410, 1385 cm⁻¹). Lithium aluminum hydride reduction of the cyclopropenium bromide gave a 2:1 mixture of 1-(p-bromophenyl)-2,3-diphenyl- and 3-(p-bromophe-

nyl)-1,2-diphenyl-cyclopropene <u>3</u> (mp. 98-111°C ; ν max (KBr) 1820 cm⁻¹ ; ϑ (CDCl₃) 3.24(s, 2H), 3.21(s, 1H). After being lithiated with an equi-molar amount of nbutyllithium in ether, the mixture was allowed to react with 2,3-diphenyl-2-cyclopentenone and the product was hydrolyzed with 2N sulfuric acid to produce <u>4</u> (mp. 128-135°C ; 38% yield ; ν max (KBr) 1825 cm⁻¹ ; λ max (MeCN) 390 nm(log ε 4.54) ;

 δ (CDCl₃) 3.96(Ha), 3.28(Hb)). Deprotonation of <u>4</u> with sodium hydride in DME provided a deep red solution of the corresponding cyclopentadienide. The solution was directly submitted to the action of cyanogen chloride, the resulting crude <u>5a</u> (X=Na) was treated with tetramethyl ammonium chloride and then purified by chromatography over alumina, affording yellow needles <u>5b</u> (X=NMe₄)(mp. 269-270°C; 10% yield; ν max (KBr) 2180, 1828 cm⁻¹; λ max (MeCN) 265 nm(log ε 4.38), 311(4.47), 406 (4.48)). Hydride abstraction of <u>5b</u> with trityl salt in acetonitrile yielded the quinarene <u>6</u> as reddish violet needles (mp.> 300°C; 97% yield; ν max (KBr) 3050w, 2180s, 1835w, 1592vs, 1500m, 1489m, 1455m, 1405vs, 1320s, 1300s cm⁻¹; λ max (MeCN) 274 nm(log ε 4.58), 301(4.58), 315sh(4.55), 540(4.60)).

 $\underline{6}$ is stable in solid state and in an absolutely dry solvent such as acctonitrile, acctone, chloroform or DMSO. However it is extremely unstable in a wet

Table 1 : NMR spectral data of $\underline{6}$, $\underline{10}$, $\underline{5b}$, $\underline{8}$, and $\underline{7}$ (δ , ppm, 100 MHz, TMS).												
	Solvent	Central 6-mem. ring		Phenyls a	Phenyls							
Compound		H-5,10	Н-6,9	ortho-H	т,р-Н	at C-2,3						
<u>6</u>	(CDC1 ₂) ₂	8.58 J=8.	8.68 3 Hz	8.51	7.95	7.25						
<u>10</u>	СF ₃ CO ₂ H	8.41 J=8.	8.82 2 Hz	8.61	8.02	7.20-7.84 5.57(H-2)						
<u>5b</u>	DMSO-d ₆	7.72 J=8.	7.82 2 Hz	7.70 (2H), 7.38 (5H)	7.48 (3H),	7.18						
<u>8</u>	DMS0-d ₆			8.32 (Ph at C-5)	7.85 (Ph at C-6)	7.75 (H-1,4)						
7	DMSO-d6	8.00 (H-8,13) J=8.3 Hz		9.41 (H-1 8.72 (H-2 8.89 (H-3	7.15 (C-10,11)							

Table 2 : Effect of the solvent polarity on the longest wavelength transition of the quinarenes $\underline{6}$, $\underline{7}$, and calicenes $\underline{8}$, $\underline{9}$ (nm).											
Solvent (Dielect. const.)	DMS0 (46.7)	MeCN (37.5)	Me ₂ CO (20.7)	^{CH₂C1₂ (8.9)}	(CHC1 ₂) ₂ (8.2)	$^{C}6^{H}5^{Br}$ (5.4)	^C 6 ^H 6 (2.3)				
<u>6</u>	537	540	564	592	606	632	-				
7_	672	687	733	840	908	934	-				
<u>8</u>	-	347	-	352	-	-	358				
<u>9</u>	-	371	-	-	-	-	379				

solvent, because of the high electrophilicity of the three-membered ring, and affords a yellow solution of the corresponding hydroxycyclopropene derivative. The nmr signal (Table 1) of the phenyl protons ortho to the three-membered ring appeared at quite lower field, which is upfield only by 0.1 ppm compared with that of <u>10</u> (vide infra). <u>6</u> has a characteristic intense band in the infrared at 1405 cm⁻¹ which may be mostly ascribable to C-C ring expansion of the three-membered ring. From these findings it has proved that the three-membered ring of <u>6</u> has an appreciably positive character and hence the polar structure <u>6a</u> contributes predominantly to the ground state. This fact is also demonstrated by such a solvent effect on the electronic spectrum (Table 2) that <u>6</u> shows a blue shift of the 1st band on going from polar to less polar solvents. Although the direction of the shift is parallel to those of calicenes <u>8</u>⁶ and <u>9</u>, ⁷ it is of outstanding interest that the solvent polarity produced a big change in λ values of the absorption maxima in the case of the quinarenes <u>6</u> and <u>7</u>. A further comparison of the nmr spectrum of <u>6</u> with that of cation <u>10</u> reveals that H-5 and H-10 in <u>6</u> are diamagne-

 $\underline{8}$: R₁=CN, R₂=H $\underline{9}$: R₁=R₂ = Ph

tically shifted by 0.17 ppm while H-6 and H-9 in 6 are shifted paramagnetically by 0.14 ppm. This would be mainly due to the diamagnetic anisotropy of the 5-membered ring, oriented in good co-planarity with the central 6-membered ring, of 6. The chemical shift of the C-7 and C-8 phenyl protons in 6 appears at relatively lower field than that of the corresponding protons of dicyanocalicene 8,⁶⁾ indicating that the contribution of the polar structure would be more significant in 6 This may be due to the enhanced stabilization of the central 6-memberthan in 8. ed ring, which trends to be a cyclic 6π system, of <u>6a</u>. Although the quinarene 6 is quite sensitive to base, it is rather stable to acid and was not protonated in acetic or formic acid,⁸⁾ but was protonated reversibly in trifluoroacetic acid affording a yellow salt <u>10</u> ($\lambda \max (CF_3CO_2H)$ 259 nm(log ϵ 4.34), 324(4.75)). The protonation of 6 to the salt 10 took place presumably at C-2, 9) because the electronic spectrum showed the long wavelength absorption maximum at much shorter wavelength reagion compared with the conjugated cation 11^{10} (mp. 230-231°C; λ max (MeCN) 230 nm(log ε 4.47), 300(4.50), 310(4.51), 458(4.49) ; μ max (KBr) 1592, 1400, 1075 cm⁻¹; δ (CF₃CO₂H) 8.52-8.37(H-6,9 and ortho-H of Ph at C-7,8), 8.08-7.91(H-5, 10 and m,p-H of Ph at C-7,8), 7.59(H-4), 7.41-7.27(Ph at C-2,3), 4.11(H-1) and the nmr spectrum showed (Table 1) the C-2 and C-3 phenyl signals over a wide range of 7.20-7.84 ppm.

References

- 1) Part V : K. Takahashi and K. Takase, Tetrahedron Lett., 245 (1975).
- 2) H. Yamaguchi and T. Nakajima, Bull. Chem. Soc. Japan, <u>48</u>, 1325 (1975).
- A. A. Bothner-By, J. Amer. Chem. Soc., <u>77</u>, 3293 (1955); S. Misumi, M. Kuwana,
 K. Murashima, and M. Nakagawa, Bull. Chem. Soc. Japan, <u>34</u>, 1833 (1961).
- 4) R. Breslow and H. W. Chang, J. Amer. Chem. Soc., <u>83</u>, 2367 (1961).
- 5) All new compounds gave satisfactory element analyses.
- 6) H. Prinzbach and E. Woishnik, Helv. Chem. Acta, <u>52</u>, 2472 (1969).
- 7) E. D. Bergmann and I. Agranat, Chem. Comm., 1965, 512.
- 8) The [5.6.7] quinarene 7 is easily protonated in formic acid.
- 9) <u>10</u> is possibly contaminated with about 10-15% of the compound protonated at other position than C-2 (probably at C-14) because a very weak singlet was observed at 5.41 ppm along with 5.57 ppm.
- 10) A similar phenomenon was observed between the protonated species of $\underline{7}$ and p-(3,4-diphenyl-1,3-cyclopentadien-1-yl)phenyl tropylium ion.¹¹)
- K. Takahashi, S. Takenaka, Y. Kikuchi, K. Takase, and T. Nozoe, Bull. Chem. Soc. Japan, 47, 2272 (1974).